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Game Tree I — Red and Black Alternate
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Game Tree II —
Red and Black Alternate Irregularly
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Game Tree III — Hidden Info

Red cannot distinguish

Black cannot distinguish Black cannot distinguish

Intermixed indistinction
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Game Tree IV — Simultaneous Moves

U(ablack , ared)U(ablack , ared) U(ablack , ared) U(ablack , ared)

Theory and Practice of Artificial Intelligence 67 / 150



Other Game Types

Prisoner’s Dilemma: game with

1 simultaneous moves
2 non-zero-sum payoff

P1\
P2 defect cooperate

defect −6\
−6

0\
−10

cooperate −10\
0

−1\
−1
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Dominance

Def. (strong dominance): a strategy s for a player p strongly
dominates s′ if the payoff using s is better than using
s′ for every fixed choice of strategy for other players.

Def. (weak dominance): a strategy weakly dominates if it is
better on (at least) one strategy of other players and
no worse on any other.

Def.: A dominant strategy dominates all others.
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Pareto optimality/dominance

Def. (Pareto optimality): an outcome is Pareto optimal if no
other outcome would be preferred by all the players.

Def. (Pareto dominance): an outcome is strongly Pareto
dominated if all players would prefer some other
outcome

Def. (weak Pareto dominance): an outcome is weakly Pareto
dominated, if some players would prefer another
outcome to which all others would not mind
switching
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Dominance in Prisoner’s Dilemma

Note: both Alice and Bob have a dominant strategy, i.e. we
have a dominant strategy equilibrium

Def. (Nash equilibrium): a selection of strategies for each player
such that no player can benefit by switching his/her
strategy if all other players’ strategies are unchanged.

Remark: the dilemma in the prisoner’s dilemma is due to the
fact that the Nash equilibrium (−6,−6) of both
prisoners defecting is Pareto dominated by (−1,−1)
of both prisoners cooperating.

Note: a Nash equilibrium can arise even without the
existence of a dominant strategy.
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Comments on Game Theory

Remark: if

the prisoner’s dilemma game is being iterated
the players are allowed to have memories and
identify their opponent

this can lead to solutions which avoid the equilibrium.

Note: Tit-For-Tat and very related strategies prove to be
remarkably stable and robust solutions.

Remark: if one has a Pareto-optimal point which is also a Nash
equilibrium, then we call that a solution of the game.
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Back to Zero-Sum Games

Consider: simultaneous zero-sum games. Need to consider
only the payoff P for one of the players, the
other will follow as −P.

2-Finger Morra: payoff matrix:

E\
O 1 2

1 2\
−2

−3\
3

2 −3\
3

4\
−4

Goal: find solution
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Zero-Sum Games: Solution

Scenario 1: force E to begin, O to follow. This is an advantage
for O. Thus, E is guaranteed an outcome of
UE ≥ −3.

Scenario 2: force O to begin, E to follow. O can ensure an
outcome with UE ≤ 2.
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Mixed Strategy

Note: revealing a strategy gives the second player an
advantage.
For, if second player plays [p : 1; (1− p) : 2]
(notation: lottery where outcome 1 is selected with
probability p and outcome 2 is selected with
probability 1− p), the expected utility for E is

pUE(O = 1) + (1− p)UE(O = 2)

If UE(O = 1) and UE(O = 2) are different, O should
pick the best as pure strategy.
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Utilities for Mixed Strategies I

Assume: E moves first, O does not know the move, but knows
p in E’s strategy [p : 1; (1− p) : 2]. Then, if

1 O chooses 1, then
E(U) = 2p− 3(1− p) = 5p− 3

2 O chooses 2, then
E(U) = −3p + 4(1− p) = 4− 7p .

Thus: O will always pick the minimum of both
E will pick p such that this minimum is maximal
i.e. resulting payoff is U = − 1

12 .

−3

2

4

−3
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Utilities for Mixed Strategies II

Assume: O moves first, probabilites [q : 1; (1− q) : 2]. If

1 E picks 1, then E(U) = 2q− 3(1− q) = 5q− 3
2 E picks 2, then

E(U) = −3q + 4(1− q) = 4− 7q
Thus: E picks the maximum of both

O picks q such that this maximum is minimal
i.e. value becomes U = − 1

12 .

Note: The two U values enclose the true value, which is
therefore U = − 1

12 . It turns out that p = 7
12 = q.

−3

2

4

−3
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Minimax Equilibria

Bottom Line: there exists an equilibrium, a minimax equilibrium
which is Nash equilibrium.

von Neumann: every two-player zero-sum game has a minimax
equilibrium on mixed strategies. Also, in zero-sum
games, Nash equilibria are minimax equilibria.
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