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Motivation (Fermat, Pascal)

Consider: pot of money, two-player bet (coin toss)

Problem: game is interrupted — what is fair split of pot before
coin toss?

Idea: assume none of the 2 outcomes of coin toss
preferred
associate a probability of 1/2 with each of the
outcomes
this is the weight by which the payoff of the pot
is multiplied for each of the potential outcomes:
each of the players gets 1/2 of the pot
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Discussion

Note: this is a special case
in general, the probabilities are not identical for
the outcomes
also, more than 2 outcomes possible

Def.: random variables and probabilities

a random variable X is an object with potential
outcomes x1, x2, . . . from a set X ;
each of these outcomes x1, x2, . . . is associated
with a real value, its probability P(X = x1) ≡
p(x1), P(X = x2) ≡ p(x2), · · · ∈ R s.t.

1 p(x) ≥ 0 for all x ∈ X ;
2 ∑

x∈X
p(x) = 1
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Example: Die

Consider: 1 die with 6 sides;
2 assume no reason to assume asymmetry, i.e. no

side is preferred
(Laplace’s principle of insufficient reason)

3 consider outcomes D, probability of each
outcome 1,2,. . . ,6 is P(D = 1) = P(D = 2) =
· · · = P(D = 6) = 1/6.

Theory and Practice of Artificial Intelligence 114 / 150



Joint Variables

Example: two dice, described by random variables

Joint Variables: (D1, D2) with probabilities p(d1, d2) =?
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Joint Variables/Probabilities

Example: two dice, described by random variables

Joint Variables: (D1, D2) with probabilities
p(d1, d2) = 1/36 = 1/6 · 1/6

Outcomes: all combinations of D ×D, with D = {1, . . . , 6}
with equal probability

Note: we will see, this is a special case!
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Example: Sister/Brother

Consider: random variables C1, C2 ∈ {boy, girl}, the first and
the second child of a family.

Question: assuming that the first child is a girl (c1 = girl),
what is the probability that the second child is a boy?
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Example: Sister/Brother

Consider: random variables C1, C2 ∈ {boy, girl}, the first and
the second child of a family.

Question: assuming that the first child is a girl (c1 = girl),
what is the probability that the second child is a boy?

Answer: consider outcomes:

c1 c2 p(c1, c2)
boy boy 1/4
boy girl 1/4
girl boy 1/4
girl girl 1/4
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Answer: Sister/Brother

Remember Question: assuming first child is a girl
Answer: consider outcomes:

c1 c2 p(c1, c2)
boy boy 1/4
boy girl 1/4
girl boy 1/4
girl girl 1/4

Note: only cases considered with c1 = girl

Here: total weight (probability) of cases with C1 = girl is
1/2, and 1/4 of which cover the cases where
C2 = boy.

Hence: probability that second child is boy if first child is girl
given by

1/4
1/2

= 1/2
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Example: Sister/Brother II

Question II: assume one of the children is a girl, what is the
probability that the other child is a boy?
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Example: Sister/Brother II

Question II: assume one of the children is a girl, what is the
probability that the other child is a boy?

Answer: consider outcomes:

c1 c2 p(c1, c2)
boy boy 1/4
boy girl 1/4
girl boy 1/4
girl girl 1/4

Note: now total probability of the cases to consider
(C1 = girl or C2 = girl) is 3/4!
in 2 of these cases, the other child is a boy,
original probability is now 1/4+1/4=1/2

Hence: probability that other child is boy if one child is girl is:

1/2
3/4

= 2/3
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Conditional Probabilities

Def.: probability of a random variable Y if another random
variable X is given is called conditional probability,
and written P(Y = y|X = x) ≡ p(y|x).

Example: in boy/girl example, we calculated in

1 Question I: P(C2 = boy|C1 = girl)
2 Question II: P(C1 = boy or C2 = boy|C1 =

girl or C2 = girl)
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Joint Probabilities and Marginalization

Summary: joint distribution of two variables C1, C2:
p(c1, c2)
probability of only one of the variables obtained
by marginalization — sum over the other:

p(c1) = ∑
c2∈C2

p(c1, c2)

example for marginalization (over the second
variable): probability of first child being girl
(was: 1/2)
not marginalization: probability of one child
being girl — for this, we had to consider both
first and second child!
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Conditional Probabilities

Summary: conditional distribution of a variable C2 given
another variable C1: p(c2|c1)
example: probability of second child being boy if
first child is girl, expressed from the joint
distribution:

P(C2 = boy|C1 = girl) =
P(C1 = girl, C2 = boy)

P(C1 = girl)

note: select all (and only) cases where condition
C1 = girl holds. Take probability of desired
case C2 = boy and normalize by the total
probability of the condition C1 = girl.
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Conditional Probabilities II

Note: conditional can be computed also in more general
cases, namely when outcomes are combined
(Question II)
Divide probability of desired outcome through total
probability of conditional, in general:

p(y|x) = p(x, y)
p(x)

Note: in Question II, the notation for the combined
conditions (one of the children is a girl/boy) would
have to be suitably denoted, but simplified things by
summing up the probabilities of all relevant cases.
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Bayes’ Theorem

Remark: Note that

p(d2|d1)p(d1) = p(d1, d2) = p(d1|d2)p(d2) .

From this follows

Bayes’ Theorem: One has:

p(d2|d1) =
p(d1|d2)p(d2)

p(d1)
.

Note: Bayes’ Theorem highly important: allows one to turn
around the direction of a conditional. If conditional
in one direction is known, the other can be inferred.
Sufficient to compute p(d1|d2)p(d2); denominator
obtained by normalization.

Theory and Practice of Artificial Intelligence 126 / 150


