Using Real-Time Recognition of Human-Robot Interaction Stygs
for Creating Adaptive Robot Behaviour in Robot-Assisted Play
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Abstract— This paper presents an application of the Cas- interaction in general and, more specifically, imply a lack
caded Information Bottleneck Method for real-time recognition  of spontaneous and social reciprocity during play. Besides
of Human-Robot Interaction styles in robot-assisted play. This the difficulty in perceiving the coherence of categories and

method, that we have developed, is implemented here for an t b hv child ith auti .
adaptive robot that can recognize and adapt to children’s play concepts can be a reason why children with autism perceive

styles in real time. The robot rewards well-balanced interaction ~@n object in its parts and not as a whole, compare the weak
styles and encourages children to engage in the interaction. The central coherence theory [6; 7] for details. However, cause

potential impact of such an adaptive robot in robot-assisted play  for impaired play are still not very well understood. These
for children with autism is evaluated through a study conducted causes can vary for different children, depending also en th

with seven children with autism in a school. A statistical analysis lity of the child and h t . f ol
of the results shows the positive impact of such an adaptive PE'SONality o the child and her past experience of piay.

robot on the children’s play styles and on their engagement in Yet play is an important vehicle for learning. Children
the interaction with the robot. can construct some understanding, i.e. active constructio
of meaning, through play. Besides, children usually enjoy
playing (though this might not be the case in autism).
The work presented in this paper is part of the Aurordheir pleasure and motivation seem to increase when they
project, an ongoing long-term project investigating theepe  have the impression that they master a play situation [8].
tial use of robots to help children with autism overcome som@onsequently, if we try to help children with autism master
of their impairments in communication, social interactiorsituations of play, they may have more fun playing which
and imagination and fantasyChildren with autism are able may contribute, even very modestly, to their quality of life
to play but the nature of their play may be described aBlay is also an important medium for self-expression [8].
restricted. Indeed, according to the American Psychiatric Consequently, here we focus on facilitating play between
Association, “a lack of varied, spontaneous make-beliewehildren with autism and an autonomous robot, and particu-
play is a defining feature of autism” [4]. Children with larly, we investigate the potential of a robot that can detec
autism often play in a repetitive way, which can be linked tahe children’s play styles and adapt to them accordinglgh{su
the children’s preference for predictable environmentse T a robot is called an ‘adaptive robot’ in contrast to a ‘reaeti
advantage of enabling children with autism to interact witlobot’ which would only respond to current sensory input).
a robot is that robots enable simple and safe interaction l@ur goal is to encourage the children to engage in play and,
initially providing a relatively predictable environmefir  when playing, to encourage ‘well balanced’ tactile int¢iat
play. Progressively the complexity of the interaction can bstyles, i.e. neither too forceful nor too weak and within an
increased. intermediate frequency of interaction. We therefore askire
Different possible obstacles have been identified thanhofteéhe following research questions:
prevent children with autism to actualize their potential f
play. Among them are impairments in socioemotional inter-
subjectivity, impairment in joint attention and impairntém
Theory of Mind [5]. These impairments negatively influence

I. INTRODUCTION

« Does the adaptive robot, as described above, encourage
or discourage the children from engaging in the inter-
action with the robot? Does their engagement change
when interacting with a reactive robot?
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comments on the statistical analysis. robot to recognize in real time the tactile play styles of
LAutistic Spectrum Disorders can appear at various degnegsefer to a child. This has been achieved by applying the Cascaded

different skills and abilities [1; 2]. Communication, sociateraction and .

imagination and fantasy have been identified as the main impaisrie Information Bottleneck Method, a method that we developed

autism, [3]. and that is capable of extracting the temporal informatibn o



a signal such as a time series of sensor data. We introduaméhimizing the number of bits from the accessible sigial

it in a previous paper [9]. This method was developed as are. maximizing the compression. The optimal assignment
extension of the well-known Information Bottleneck Methodcan be found by minimizing the functional

to the analysis of time series [10]. Section 3 briefly expain _ B

the method and provides details on its implementation for Llp(Elz)] = 1(X; X) — BI(X;Y) @

the recognlt_lon of human-r(_)bot |nteract|o_n styles. We_ thenI (X;Y) stands for the mutual information betwe&hand
report on trials conducted in a school with seven childre

h auti hich luated th tential i t of h Y. For 8 and the cardinality ofX fixed, an expression can
with autism which evaluate ,e potential impact ot such ag, given which specifies implicitly the solution and leads to
adaptive robot on the children’s play styles.

a fixed-point iteration. For the information bottleneck-set

1. RELATED WORK ting, the KU”baCk'Leibler dlvergenC@KL(p(y\xﬂ\p(y|5:))

Related ki b isted olay f hild .hreplaces the distortion function from conventional rate-
elated work in robot-assisted play for children withyiciotion theory.

autism has shown that when playing with a robot (in contrast The Agglomerative Information Bottleneck algorithm [19]

to a stuffed animal), children with autism tend to show MOre akes the assumption thattends tooo in the Lagrangian
behaviours that are typlcally_ impaired in autism (g.g. eySquation (Eg. 1). In this specific setting, the mutual infarm
contact) [11]. Earlier comparisons between a m_oblle rob(? on betweenX andY is maximized and a hard partition of
and a toy truck have shown more engaging behaviour towar e data into subsets is induced, each subset correspanding

the gutonomous rob_ot [12; 13]. Moreover other stu_dleg bottleneck staté: for a fixed cardinality ofX (i.e. a fixed
h|gh||ghted the' potent.|al role of the robot as asocal miedia number of subsets - also called states - in the bottleneck),
for children with autism [14; 15; 16]. Most studies Wer€,,ch member of the input signale X' belongs to one and

conducted i_n task oriented s_,ettings,_e.g. involving irotat only one subsef € X andz is the subset for which(y|#)
[16] or chasing games [15] with reactive (remotely congall has the smallesb . (p(y|2)|[p(y|Z)). The hard partition can
or autonomous) robots. Besides, the role of the experimentge softened afterwards, with reverse annealing

in robot-assisted play has been investigated, firstly byiftob
et al. [17] and more recently by Francois et al. [18]. B. The Cascaded Information Bottleneck Method

The current paper focuses on investigating the role of an
adaptive robot in robot-assisted play. We investigate kdret
an adaptive robot, i.e. a robot that could adapt to each’shil
play styles in real time would have a positive effect on thcf

1) The principle Based on the Information Bottleneck

J\/Iethod, we have developed a novel time-filtering method

articularly adapted for pattern recognition in time sgrie

et x € X be a time series input signal of lengthx =

xo, ..., 2—1]. We takek and S € N, with [ = k£ x S, such

that x can be divided intoS disjoint sequencesy,, s =

I1l. THE CASCADED INFORMATION BOTTLENECK 0,...,(S —1), each of cardinality, in the following way:
METHOD

children’s play styles and guide them progressively towar
more well balanced interaction styles.

To -+ Th—1 Xk - T2k—1 TkxS—1

A. Background: The Information Bottleneck Method

The Information Bottleneck Method [10] is a clustering
method based on an information theoretic approach WhoseThe Cascaded Information Bottleneck method relies on the

purpose 1S t_o extract the relevant informaticin a signal rinciple that the relevant information can be progredgive

T € X that is, extract features. OT a ra”dOT“ variable _(r'v'gxtracted from the time series with a cascade of successive
X that are relevant to Fhe pred|ct.|on of. This prpblem IS pottlenecks sharing the same cardinality of bottlenectesta
modglg d by the following Bayesian petwork W.'th Markovbut trained successively. The agglomerative informatiot b
cond|t|on_: X <_.X ~— Y where X is the variable that tleneck algorithm is applied to each bottleneck succelsive
extracts information about” through X', the first one being trained in the standard way while the

_Th's'_ popular ,methoq prowdes an aItgrnaUve 0 ral@ oyt ones depend on the previous bottleneck states, as the
distortion theory’ techniques which constitute a standar llowing graph shows:

approach to lossy source compression. In the Information

e X0 i X1

Bottleneck method, the relevance is not addressed thraugh a Y o

external distortion measure but directly through a vaisi B

principle implementing an information-theoretic formiita X \X2 T ™ X,

of sufficient statistics. The rationale is that the besteratf \‘ \ \‘ \
between the compression of the signal and the preservdtion o ~ ~ ~ .
the relevant information is the one that keeps a fixed amount Xo = X; —> Xp —> T Xsa

of relevant information about the relevant signal Y while

S . o ) o 2) Extrapolation: The Cascaded Information Bottleneck
In this context, the relevant information is defined as thermition Method ivel tracts th | tinf i
that the (accessible) signal € X provides about another (typically not € . od progressively extracts the relevant informatianrfr
directly accessible) signal € . an input sampleX = [Xo,..., Xs_1] by a recall on the



successive componentX{ for the first step of the cascade,frequency of the interaction is categorised into four @ass
(Xs,l,Xs) for step s > 0). Each bottleneck (we now defined by their typical periodicity of interaction:\gry low
discuss onlys > 0, without loss of generality) is charac- (Sp): the elapsed time between two tactile interactions is
terized by a probabilistic mapping(z;|(Zs—1,zs)) which, greater tharl5 seconds; iimiddle inferior (S;): the elapsed
for the present work using the agglomerative informatiotime between two tactile interactions is lower or equal fo
bottleneck algorithm, is hard, i.e. above probability isot f seconds and greater thaiseconds; iiiymiddle superior (S2):
exactly one valuetr, of X, and vanishes otherwise, i.e. itthe elapsed time between two tactile interactions is lower
implements a hard mappin@,_1,zs) — Zs (note that the or equal to5 seconds and greater thansecond; iv)very
input (Zs_1,z5) corresponds to the input of the original high (Ss): the elapsed time between two tactile interactions
information bottleneck method). is lower or equal tol second.S; and Sy are considered
During the information bottleneck training process, fothere as well-balanced frequencies of interaction, while
each step of the cascade successively (0), the mapping corresponds to a rare interaction afigl to a very intense
(Zs—1,2z5) — T is built. If, however, at a steg in the interaction.
cascade a paifZ;—1,zs) never occurs during the training Two different cascades were built independently, one for
(we call this anunseen pair), the mapping(Z;—1,2s) —  each criterion of interaction. The gentleness corresptmds
Zs will not be defined for the completed cascade. Uposhort-term time scale event while the frequency correspond
processing of novel data, however, such a pair may ke a mid-term time scale event (see Fig. 1 which provides the
observed and in this case the cascade has no way to inferrameters for each cascade). The samples for the training
the following bottleneck staté, since there is no natural of each cascade were generated during interactions with
a priori correspondence of bottleneck states in successittee Aibo ERS-7 in laboratory conditions within different
bottlenecks. runs. Each run contained one class exclusively, i.e. for the
For such cases, we therefore introduce an identificatiagriterion gentleness, the samples generated within a same r
of successive bottleneck states which will provide us with aontained only gentle or only strong styles of interactiiog. (
“default” continuation of a bottleneck state from step- 1 only gentle or only strong strokes were generated during a
to steps in the case of unseen pairs. L&_; and X; be same run), and for the criterion frequency of the interagtio
the set of bottleneck statés_; andz,, as well asp(Z;_1) the samples generated within a same run contained only one
andp(z,) their empirical probabilities. We consider one-to-type of frequency (i.eSy, S1, So or S3 exclusively).
one mappings: from X,_1 t0 X, (which, for convenience,
we Ca” permutations). EaCh SUCh permutation pl’OVideS an Criteria Classes Length of the input vector | Length of the Length of the | Number of

(window size), | individual cascade, S bottleneck
1 1fi 1 H 1 subsequences, k states, m
identification of successive bottleneck states. We defiBe th e casses = e - -
informational cost of a permutation as gentle/strong| (equivalent 0 1.6 seconds
Frequency| 4 classes: 472 Py 236 6
So, S1, S, 'S | (equivalent to 15.1 seconds)
d(g—l,g)('r) = - Z p(jsfl)IOgﬁ(Xs = T(jsfl)‘)?sfl = 5571)
Fo 1€X 1 Fig. 1. Parameters for each cascade of bottlenecks.
3 . @
Note thatp(X, = r(Zs—1)|Xs—1 = Z,-1) is, for a given In both cases, a sliding window proceeds on the sensor

permutationr, the probability that the next state#$z, 1) data time series. For the criterion ‘gentleness’, the algor
knowing that the current state i5_,. The logarithm mea- does not learn null samples (i.e. samples made of null events
sures the unpredictability of the next state (i.e. the unprenly). For the frequency of interaction, the system dealg on
dictability of X, given Z,_1). If 5(X. = r(#.-1)|X.—1 = with samples whose first component is not null.
Z,-1) = 0 then, by conventiond ,_; ) (r) is co. The postprocessing relies on a ‘winner takes all’
To define a “default” continuation we now choose a permutarinciple: The selected (winner state) is defined by
tion R(s—1, s) that minimizes that unpredictability, weighted arg max,cy p(y|Zs—1).
by the probability that the stat@,_; actually occurs. Note  The method shows a sound recognition for both short-
that per construction of the bottleneck cascade, one n&gr herm and mid-term time scale events and involves only a
p(Zs-1) = 0. very short delay for the recognition of short-term time scal
events (0.17 seconds on average) [9]. Besides, the training
process enables a structure to emerge over the cascade
R(s—1,s) defines now a “default” path betweeti, ; and since the conditional entropy between the bottleneck state
X,, and thus provides an extrapolation of the succeedimf two successive bottlenecks is globally decreasing over
bottleneck state in the case of an unseen pair. the cascade (Fig. 2). The Cascaded Information Bottleneck
3) Implementation: The Cascaded Information Bottleneckmethod is transparent and enables control over how much and
Method has been evaluated with two different criteria ofvhat new information is taken at which step of the cascade.
interaction, namely the gentleness and the frequency of the particular, the extrapolation process enables to cottim
interaction in [9]. The criterion gentleness contains twalegrees of freedom of the system and prevent the cascade
classes, namely ‘gentle’ and ‘strong’ which correspond refom over-learning.
spectively to non-forceful and forceful tactile interacti The In the next section, we present an application of the

R(s—1,s) = argmin rds_1,5)(r) ®)



conditional £ Ge“]}'E/Stm“g_i bottleneck actually gets it. Concretely, the robot should help reguihe
5. 08 onditional Entropy of successive boftleneck state interaction: if the child plays in a well-balanced intefant
= . . .
£8% o3 \\\m style, the robot reacts appropriately to the stimulation; o
T £ Q . . . .
§3° o1 DR —— the contrary, if the interaction is e.g. too strong, the tobo
0 L ‘ 5 7 ‘9 ‘11 ‘13 ‘15 ‘17 ‘19 ‘21 ‘23 ‘25 does not show any reaction. Moreover, the child should be
position s of the bottleneck in the cascade encouraged to engage in the interaction if he/she is not
Frequency of theinteraction: engaged. Therefore, the robot should be both rewarding and
2 1. Conditional Entropy of successive bottleneck stat: engaging_
g 1
= 1'{11 The reward is a physical reaction of the robot, which
g% oc ‘4,“ can be a gesture, a movement, a light or a sound. The
5 o INGR — b concrete instantiation of these behaviours has been d=bign
0] T T " bow———" i " 0 - . . . .
S 6 0 0 0 s 10 Lo 10 10 180 200 20 2 by immersion for each child beforehand during long-term
position s of the bottleneck in the cascade studies with each child, whereby the experimenter tested

Fig. 2. Conditional entropyl (Kas1|Xs). H(%.sx|%.) globally d different robot behaviours with each child in order to eadu
ig. 2. Conditional entrop s+1 . s+1|X5) globally decreases e S -
over the cascade, pretty quickly, Whigch sugSgests that a structure is progressidel 1) whether the speC|f|c child liked it or not, 2) whether he/sh
rapidly emerging over the cascade: at the beginning of the cascade, a lot of ngpnferred a specific meaning to the reaction and, partigular
information is needed to deduce the next bottleneck state and then, when pgragress h h . had. in his/h . f f
in the cascade, less and less new information is needed. However, for the frequeNt\,[)het er the reaction had, in his/her view, a connotation o
o; ir;]teraction&H(deﬂ\ﬁ(S) has s%meh_snr:all local pehaks, bohth at the very t?]eginninqdhe robot being happy or sad.
of the cascade and at the very end which suggest that at these steps s, thataput . . . .
X may influence a bit more in the choice of next equivalent sfte, . Note We shall now detail the notion of reward: each time the
;hatd;hg ongash at thhe erl1d O;Sthe cg;cadle n;ay rEﬂE(;t rt1he imgortﬁncel of .tl;e |a§}| stedwild activates a sensor, the robot evaluates the interacti
or distinguishing the classeSy and Si. In the rest of the study, the algorithm wi . .
extrapolate between step 5 and 24 (respectively 5 and 216) of the cascade for §1T<¥Ie in terms of gentleness and 'n_ terms of frequ_encfy and
gentleness (respectively frequency). gives a reward, separately according to each criterion. If
the interaction is gentle, then the robot shows a reaction
) . to the child. The reaction depends on the sensor activated
Cascaded Information Bottleneck method for Robot-Asd|ste(there is a deterministic mapping between the sensors and
Play whereby the method is used to enable a robot Qe reactions of the robot for each child). If the stimulatio
recognize in real time human-robot interaction styles anes place in a good overall frequency of interaction, a.e.
adapt to them accordingly. In this application the critefa \ye||_najanced frequency of interaction, then two LEDs turn
interaction detected are the gentleness and the frequéncy @ on the robot's face (which is sometimes interpreted by

the interaction and the cascades are the ones describesl in§kL. -hildren as the ‘robot’s eyes’). Note that a well-batahc

previous paragraph (and detailed in [9]). frequency of interaction is a frequency not too low and not
IV. APPLICATION: A REAL-TIME ADAPTIVE ROBOT FOR 100 high, represented in this study by the clasSeand.S,.
ROBOT-ASSISTEDPLAY Note, this model is generic and can be applied with different

criteria of interactions. Fig. 3 presents the reward schiEma

A The adaptive robot ] ] _the two criteria (gentleness and frequency) considered. her
In the context of this paper, a robot that is ‘adaptive’

can recognize interaction styles in real time and adapt tq,
them appropriately. In other words, an adaptive robot eeact
differently depending both on i) which sensor(s) is (are)

requency

3 Reward for Gentle No Reward

activated (e.g. head sensor) and ii) the styles of intevacti Reward for Gentle
recognised. In contrast, by ‘reactive’ robot, we refer to a % Rewardpfgqvg::.cbymamd No Revard
robot that can only react differently depending on which —_—
sensor is activated (e.g. head sensor or back sensor front), = Rewar for wellbaanced No Reviard

Frequency

and which will not change its behaviour according to the
interaction styles.

1) Reward of well balanced interaction styles: The adap-
tive mode relies on a reward basis for well-balanced in- "™ ="
teraction styles: the child should get a positive feedback No interaction GENTLE STRONG  cortomene
from the robot when he/she plays in an appropriate style of
interaction. The idea behind is that the child should always Fig. 3. Reward Schema for the two criteria of interaction.
be encouraged and rewarded for every progress he/she made.
With this approach, we hope to comfort the child in gaining 2) Architecture for Decision-Making Based on Interaction
self-confidence, enjoying himself/herself, and progredgi Syles. The real-time recognition of the interaction styles
acquiring a better understanding of the interactions lee/slises the Cascaded Information Bottleneck Method. The small
is involved in. It is hoped that the rewarding process cadelay involved in the recognition process is modeled by
indirectly play the role of a trigger: the child wants to ge¢t a pause in the decision-making process, that is a small
reward and therefore changes his/her behaviour until Be/statency 600ms) during which the algorithm ignores the

So Reward for Gentle No Reward

Engaging, proactive




current interaction style. After the pause, the decisiarkimg Sensor Corresponding behaviour

process looks at the successive classifications that are madhin sensor Emit “bark” sound while opening-closing treeith
. . . Head sensor Turn head (Head tilt)
by_the Cascaded Informgtlon Bottleneck algorithm during4_ - ¢ ot sensor “Wag the tal (used for CHid E)
a fixed short amount of time and counts the occurrences of - Walk forward, turn right, stand, turn left, walkdiavards

strong behaviours recognised. If it exceeds a fixed Preaifine g g e sensor - Torn head (Hoad ar)

threshold then the final choice (i.e. the decision) is that th[Back rear sensor Emit “drum” sound while wagging tfile ta
child’s behaviour towards the robot is recognized as arsgjro

interaction style’ and the child will not get a reaction fromFig. 4. Mapping between the external tactile sensors of dhetrand its

the robot to his/her stimulation. If below threshold, therfvigg‘ég";ﬁfgrt;r':i Ea::‘f)f‘“t’sékg‘gsgfbbyel‘f;‘n:izz’fd and replaced by the robot's
the decision ‘gentle interaction style’ is made and thecthil

gets the reaction from the robot corresponding to the sensor

activated. Besides, the robot updates the criterion frecjue reactive (R) or adaptive (A)— which alternated between two
of interaction with a 1 second periodicity according to thguccessive steps.

Cascaded Information Bottleneck method (different theead As a result, a session was defined by its setting which was
for the gentleness and the frequency of interaction runningither A-R-A or R-A-R. Each child experimented with both

in parallel). If, when the child strokes the robot gentlye th settings (each during a different session, see Fig. 5).
current frequency of interaction i§; or Ss, then the child

will get the additional reward of the two lights illuminagjn Child Setting 1 Setting 2
on the robot’s face, while the robot also shows the specific | Child A A-R-A R-A-R
reaction correlated to the gentle stimulafion Child G R-AR A-R-A
for th luati f the child's di Child H A-R-A R-A-R
As_ or the evaluation of the child’s disengagement, we I 'cpijgc RAR ARA
consider that the child should be encouraged to play with the [child E R-A-R A-R-A
robot if he/she has not stroked the robot for a specific time | Child F A-R-A R-A-R
that we define here as just above 15 seconds (more exactly, [Child D R-A-R A-R-A

the length of the window size for classifying the frequency _ _ _ _ _

of the interaction which €72 x 32 ms) which is reflected Fig. 5. ‘ Settings for the dlﬁerent childresetting 1 corresponds to session 1
K . . and setting 2 corresponds to session 2.

by a null input vector for the frequency of the interaction.

B. Trials The robot’s ‘mode’ was signaled to the child by a sticker
- . ) ) . with a specific geometrical form drawn on it (a triangle for

~ 1) Participants: Seven children with autism participated 54 ptive and a circle for reactive mode); the sticker was put
in the experiments which took place in a school for moderaig, the hack of the robot at the beginning of each step. At each
learning difficulties in UK. The children had had the chancgtep’ the child was told which game he/she was now playing,
to play with t.h.e ro_bot during several months befqrehange_ game 1 for step 1, game 2 for step 2 and game 3 for step
and were familiar with both the robot and the experimente The child could see the experimenter putting the sticker
The study was carried out with approval of the University,, \he pack of the robot. The different stickers were used so
of'Hertfordsh|re Ethics .Com.mlttee. The pargnts of all th‘i’hat it was not too hard for the child to understand that the
children who took part in this study gave written consenty,me was different (this procedure was considered to help
including permission to videotape the children. the children cope with different experimental conditiorit

2) Artifact: The robot was the Aibo ERS-7. It behavedig chilg had no information about the existence of adaptive

autonomously and operated either in adaptive or reactivg,y reactive modes: he/she could only possibly observe the
mode. In both cases the mapping between the sensors and §fi.rence in the reactions of the robot.

robot’s reactions was the same except from the LEDs flashing During each game, the child could freely interact with the

for a good frequency of interaction, which was an additionglyhot. Before the start of each game, the experimenter:

feature fo_r the adaptive robot, as well as wagging the t_alll) paused the algorithm (for game 2 and 3),
. o ; I 92) congratulated the child and told him/her that now he/she
used for this specific study is detailed in Fig. 4. :

would move on to game 2 (respectively 3),

3) Procedure.c and MEEL.E'rS: - . . 3) put the corresponding sticker on,
Procedures. Each child participated in two sessions and 4) sent the ‘new robot's mode’ through a wireless connec-

the experiments involved one child at a time. Each session tion to the robot,

consisted of three successive stegaiso called games or 5) resumed the algorithm for the detection of play styles
runs), each step being defined by the mode of the robot— with the new robot's mode

3Note that this decision-making process really reflects thietaof the Each game lasted several minutes (depending on the

interaction styles considered here, the criterion ‘géstileng’ corresponding  children’s specific needs and abilities); the minimum dorat

to a short-term time scale event and the criterion ‘frequenythe  of each step was approximately 3 minutes. The experimenter

interaction’ corresponding to a mid-term time scale event. . . . -
4A session resulted in three steps also called games, whiglsazees- did not touch the robot during the trials, except for putting

sively, step 1 (game 1), step 2 (game 2) and step 3 (game 3). on the sticker at the beginning of each step (sensor data were



not collected at this stage), neither did she try to influghee the specificity of the strokes, i.e. whether they are gentle o

child’s behaviour in any way. The experimenter did not takstrong. Instead, for each child we are interested in thd tota

part in the child-robot interactions in order not to inteefe number of sensors’ activations that we compare for adaptive

with the purpose of this study which had to focus on dyadiand reactive robot modes.

uninterrupted interactions between the child and the rabot  For each child and for each mode, we count the total

order to test the potential of an adaptive robot to influenceumber of times the sensors were activated (each sensor

children’s play styles. activated counts as one activation), hamé¥y(Reactive),
Measures. The experiments were video recorded. Thdor the reactive mode, and/(Adaptive), for the adaptive

sensor data and the interaction styles detected with respewode; for each child, we analyse the relative ratio of each

to the gentleness and the frequency of the interaction wemgodé, as follows:

recorded. These data were then analysed quantitatively off

line. For the criterion gentle/strong, we actually lookdad a

thg overall pro_portlon_of the sensor’s activation ‘and at the r(Adaptive) = N me Sﬁ;ii%’b(lj:;aptive)

ratio of strong interaction styles. For the criterion ‘fuepcy

of the interaction’, we took into account its evolution over The Wilcoxon test [20] is applied to the data from

time, which means here that we looked at the whole set ﬂﬁe seven children for the two fo”owing variables

classifications, that is every 32 ms. We then used staﬂisticg:ig 7): r(Adaptive), representing the adaptive mode, and
techniques for non-parametric statistics. r(Reactive), representing the reactive mode. The test shows
C. Results that there isa significaqt effect of the experimental cood#
adaptive versus reactive (foff = 1.000, p < 0.028,

1) Satistical analysis of the engagement intheinteraction  with N = 7, Fig. 6). Thus, we can conclude that the

and the gentleness of the strokes: children engage significantly more in the interaction dgrin
the adaptive mode..

Box & Whisker Plot Gentleness of the interaction: Here, we study the nature
of the activation in terms of gentleness, i.e. whether an
activation is gentle or strong. We therefore consider the
percentage of strong strokes (also called strong activstio
among the total number of sensor activations, per run and per
child. For each child and for each mode, we take the average
of this percentage over the runs from the two sesgions

N (Reactive)

r(Reactwe) = N(Reactive)+ N (Adaptive)

90

80

70

_‘7
60 J‘

50

w (Fig. 8).
30
. Average percentage of strong Average percentage of strong
Child P 3 . L A .

. activations in the adaptive mode activations in the reactive mode

Child A 20.52 71.97
O Mean i

. e Ch!ld G 2.08 12.50
Adaptive Mode T Mean+1.96*SE Child H 5.56 9.09
(REEIINEES Child C 3.53 11.75
Child E 15.23 15.79
Fig. 6. Mean, Standard Error of the Mean (SE) and Confidenzevals Child F 17.51 67.74
for the sensors’ activation on the two mod&ge x-axis represents the two | Child D 60.58 33.33

modes; the y-axis represents the repartition in percentage of the sensors’saactivati

Fig. 8. Table providing the average percentage of strormke$rin each
mode for each child.

Comparison of the children's engagement in play in reactive

and adaptive modes The Wilcoxon test is applied to the data from the seven
children for the two following variables (Fig 8): the aveeag

of the percentage of strong strokes in the adaptive mode
and the average of the percentage of strong strokes in the
reactive mode. The test shows that there is no significant
effect of the experimental conditions on the gentlenesb®f t
Adaptive Mode strokes (V = 7 and, forT = 5.00, on getsp < 0.128): there

Reactive Mode
Mode

Child ) is no significant difference in the amplitude of the average

Relative ratio of 60
sensors'
activations r

SHere we look at the activation of any of the four continuousemal
Fig. 7. Graph showing the relative engagement of the childreadaptive  sensors, i.e. the head sensor and the three back sensors.
and reactive modes. 6Some children will naturally interact a lot with the robot, iehothers
may stroke the robot only a few time during a session, thus wiepte
Engagement in the interaction: In order to study 09K atrelative ratios. _ - o

. . . Here we consider the ratio of strong activations and ingetti whether
whether the adaptive rObO_t may_ have a positive |mpact_ QHRis ratio is inferior when the robot is in the adaptive modempared with
the engagement of the children in play we do not considemen the robot is in the reactive mode.



percentage of strong strokes between adaptive and reactive Box & Whisker Plot
modes. However, the proportion of cases where this average °*

is smaller in the adaptive mode @& cases out of7. The L= L
probability of obtaining such a deviatiofi 6r more cases out 045 °
of 7) from a fifty-fifty ratio is0.016 (two-tailed probability in am 1
the binomial test) which shows that, in the adaptive mode, th
percentage of children who react less strongly in the adapti
mode deviates significantly from a fifty-fifty ratio. %
2) Impact of the adaptive robot on the frequency of 02 ==
interaction: To analyse the impact of the adaptive robot on 020 @
the frequency of interaction, we look at the four clasSgs 015 I
S1, S2, Ss and how their occurrence varies in the adaptive () Mean,
and reactive modes. A 5D o2 T MeansLos'sE

We defineR as the set of the three runs (steps) within
a session for a specific child amﬂsi (7«) as the number of Fig. 9. Mean, Standard Error of the Mean (SE) and Confidenmrvals
events from a class; for a specific runr. For each class 0 52- The two variables arelv adapive (ps, ) and Avneactive (p5;)-
S;, each child, and each session, we define the relative ratio

ps, (r) for a given runr, defined as follows: Box & Whisker Pl
0.7
NS.(T‘)
ps(r) = 3= (4) .
ZfERNSi (7) '
For each child, for each mode (adaptive or reactive) and 0s o
for each classS;, the average relative ratio over the two

sessions is calledlv,,(ps,). For each child and for each
modem, the average relative ratio over the four classes is  os

called Av,,, (p). 1

The Wilcoxon test is firstly applied to the two following o2 o
variables: Av gqaptive(p) (representing the adaptive mode) o ==
and Avgeqctive (p) (representing the reactive mode). The test o e
shows that there is a significant effect of the experimental  °° IS L] Mo e

Reactive (S3)

conditions (adaptive versus reactive) since Tor= 0, one
hasp < 0.018, with N = 7. We can conclude that, in the
adaptive mode, the interactions are significantly richanth
in the reactive mode.

Secondly, the Wilcoxon test is applied for each class
i separately, to the following variablesivaqapiive(ps;)
(representing the adaptive mode) aAdrcqctive(ps,) (rep-
resenting the reactive mode). For claSs (respectively This study has shown that a robot that can adapt to child-
classSy) there is no significant difference between the twaobot interaction tactile styles can influence positivehe t
experimental conditions (adaptive versus reactive),esiftr  children’s play styles. Firstly, the children engaged Hign
T = 5.000 (respectivelyl’ = 4.000), p < 0.128 (respectively cantly more in the interaction when the robot was adaptive
p < 0.173) with N = 7. However, the proportion of and significantly more children played more gently with
cases wheredvgaptive(Ps,) > AUVReactive(ps,) (respec- the robot in the adaptive mode. Besides, the interactions
tively Avadaptive (ps,) > AVreactive(ps,)) iS 6 cases out were significantly richer and higher frequencies including
of 7. The probability of obtaining such a deviatiof ¢r in particular a range of well balanced frequencies were
more cases out of) from a fifty-fifty ratio is 0.016 (two- significantly more present in the adaptive mode. The in-
tailed probability in the binomial test) which shows thattroduction of an adaptive robot in robot-assisted play for
the percentage of children for which there are more eventhildren with autism which is able to adapt in real time to
related toSy (respectivelyS;) in the adaptive mode than children’s interaction styles is a novel contribution. Il
in the reactive mode deviates significantly from a fifty-fiftyboth a technical and methodological step forward in robot-
ratio. ConcerningSs (respectivelySs) there is a significant assisted play. On the one hand, the development of a new
effect of the experimental conditions Adaptive and Reactivcomputational method that enables robots to recognizeain re
since forT = 1.000 (respectivelyT = 0.000), p < 0.028 time human-robot interaction styles is a step forward tolwar
(respectivelyp < 0.018) with N = 7 (Fig. 9 and Fig. 10). socially adaptive robots. On the other hand, the evaluation
Consequently, in the adaptive mode, there are significantbf the potential of an adaptive robot in robot-assisted play
more events from clas$, (respectivelyS;) than in the expands the role that robots could potentially play in the
reactive mode. context of autism therapy.

Fig. 10. Mean, Standard Error of the Mean (SE) and Confideniezvals
for S3 The two variables arev adaptive (Ps3) @Nd AVReactive (Ps3).--

V. DISCUSSION



The study conducted here involved only a few children and
was short-term. Future work should expand this study with1]
different children with autism. Note, in our study the cinéd ]
were familiar with both the robot and the experimenter ano[
the robot’s behaviour mapping had been tailored according t[3]
each child’s needs and abilities which is very importantiei t 4]
context of autism. Future work should enable the same for th
new children involved. Besides, future work should conside
possible long-term effects of such an adaptive robot. Irﬁ
particular, future work could expand the model of adaptatio
by focusing on a larger grid of criteria for the interaction
styles: while the child progresses, the robot could in@eas!!
the range of criteria the child should meet to get a reward.
In contrast, when the child encounters some difficultiesnth [9]
the robot could simplify the range of criteria on which the
reward for the child is based, so that the child could get
a better understanding of the interactions happening. THi®]
progressive refinement in the adaptation process of the robo
to the child’s play styles could be linked, in some sensgq
to the notions of ‘discrete development’ and ‘(Alternate)
Freezing and Freeing of Degrees of Freedom’ which has
been widely used in developmental robotics [21; 22; 23]4
This technique, typically applied for a system learning onot
skills, may be transposed to a social system, constitutesl hé!3!
by the child and the robot: this social system is freezingesom
complexity in the interaction to learn more efficiently how
to deal with interaction in general. [14]
VI. CONCLUSION

This paper has presented an application of the previoudip!
introduced Cascaded Information Bottleneck Method for
real-time recognition of Human-Robot interaction styles i
the context of robot-assisted play for children with autism(16]
Such an adaptive robot, which can detect the play styles
of the children in real time and adapt to them accordingly,
has been implemented and tested in the particular context[f]
tactile interaction. The adaptation scheme rewards weil ba
anced interaction styles and encourages the child to engage
in the interaction if he/she is disengaged. The potentika rol8]
of such an adaptive robot (compared to a reactive robot) in
robot-assisted play has been evaluated with seven children
with autism in a school and a statistical analysis showed
that the adaptive mode influenced positively the play Sty|e[§9]
of the children in the following manner: 1) the children
engaged significantly more in the interaction, 2) signifiban
more children played more gently with the robot, 3) thd?"!
interactions were significantly richer and 4) the occureeng21]
of higher frequencies, including a range of well balanced
frequencies, was significantly increased. Future work khou
consider a wider study with different children with autismj22]
and investigate its long-term term impact. The Cascaded In-
formation Bottleneck Method is generic and could potelstial 23]
also be used in a variety of other applications in Robotics,
Artificial Intelligence and Artificial Life. It is hoped that
this work represents a step forward towards socially adapti
robots as well as robot-assisted play for children withsamti
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