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Abstract— This paper presents an application of the Cas-
caded Information Bottleneck Method for real-time recognition
of Human-Robot Interaction styles in robot-assisted play. This
method, that we have developed, is implemented here for an
adaptive robot that can recognize and adapt to children’s play
styles in real time. The robot rewards well-balanced interaction
styles and encourages children to engage in the interaction. The
potential impact of such an adaptive robot in robot-assisted play
for children with autism is evaluated through a study conducted
with seven children with autism in a school. A statistical analysis
of the results shows the positive impact of such an adaptive
robot on the children’s play styles and on their engagement in
the interaction with the robot.

I. I NTRODUCTION

The work presented in this paper is part of the Aurora
project, an ongoing long-term project investigating the poten-
tial use of robots to help children with autism overcome some
of their impairments in communication, social interaction
and imagination and fantasy1. Children with autism are able
to play but the nature of their play may be described as
restricted. Indeed, according to the American Psychiatric
Association, “a lack of varied, spontaneous make-believe
play is a defining feature of autism” [4]. Children with
autism often play in a repetitive way, which can be linked to
the children’s preference for predictable environments. The
advantage of enabling children with autism to interact with
a robot is that robots enable simple and safe interaction by
initially providing a relatively predictable environmentfor
play. Progressively the complexity of the interaction can be
increased.

Different possible obstacles have been identified that often
prevent children with autism to actualize their potential for
play. Among them are impairments in socioemotional inter-
subjectivity, impairment in joint attention and impairment in
Theory of Mind [5]. These impairments negatively influence
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1Autistic Spectrum Disorders can appear at various degrees and refer to
different skills and abilities [1; 2]. Communication, socialinteraction and
imagination and fantasy have been identified as the main impairments in
autism, [3].

interaction in general and, more specifically, imply a lack
of spontaneous and social reciprocity during play. Besides,
the difficulty in perceiving the coherence of categories and
concepts can be a reason why children with autism perceive
an object in its parts and not as a whole, compare the weak
central coherence theory [6; 7] for details. However, causes
for impaired play are still not very well understood. These
causes can vary for different children, depending also on the
personality of the child and her past experience of play.

Yet play is an important vehicle for learning. Children
can construct some understanding, i.e. active construction
of meaning, through play. Besides, children usually enjoy
playing (though this might not be the case in autism).
Their pleasure and motivation seem to increase when they
have the impression that they master a play situation [8].
Consequently, if we try to help children with autism master
situations of play, they may have more fun playing which
may contribute, even very modestly, to their quality of life.
Play is also an important medium for self-expression [8].

Consequently, here we focus on facilitating play between
children with autism and an autonomous robot, and particu-
larly, we investigate the potential of a robot that can detect
the children’s play styles and adapt to them accordingly (such
a robot is called an ‘adaptive robot’ in contrast to a ‘reactive
robot’ which would only respond to current sensory input).
Our goal is to encourage the children to engage in play and,
when playing, to encourage ‘well balanced’ tactile interaction
styles, i.e. neither too forceful nor too weak and within an
intermediate frequency of interaction. We therefore address
the following research questions:

• Does the adaptive robot, as described above, encourage
or discourage the children from engaging in the inter-
action with the robot? Does their engagement change
when interacting with a reactive robot?

• Does a child’s play patterns differ when the robot is
adaptive from when the robot is reactive? This question
contains two subquestions as follows: i) Are the tac-
tile strokes qualitatively different (ideally more gentle)
when the child plays with an adaptive robot? ii) Is the
frequency of the interaction differently (ideally better)
balanced when the child plays with the adaptive robot?

In order to study these research questions, a hard technical
challenge needs to be addressed, namely how to enable the
robot to recognize in real time the tactile play styles of
a child. This has been achieved by applying the Cascaded
Information Bottleneck Method, a method that we developed
and that is capable of extracting the temporal information of



a signal such as a time series of sensor data. We introduced
it in a previous paper [9]. This method was developed as an
extension of the well-known Information Bottleneck Method
to the analysis of time series [10]. Section 3 briefly explains
the method and provides details on its implementation for
the recognition of human-robot interaction styles. We then
report on trials conducted in a school with seven children
with autism which evaluated the potential impact of such an
adaptive robot on the children’s play styles.

II. RELATED WORK

Related work in robot-assisted play for children with
autism has shown that when playing with a robot (in contrast
to a stuffed animal), children with autism tend to show more
behaviours that are typically impaired in autism (e.g. eye
contact) [11]. Earlier comparisons between a mobile robot
and a toy truck have shown more engaging behaviour towards
the autonomous robot [12; 13]. Moreover other studies
highlighted the potential role of the robot as a social mediator
for children with autism [14; 15; 16]. Most studies were
conducted in task oriented settings, e.g. involving imitation
[16] or chasing games [15] with reactive (remotely controlled
or autonomous) robots. Besides, the role of the experimenter
in robot-assisted play has been investigated, firstly by Robins
et al. [17] and more recently by François et al. [18].

The current paper focuses on investigating the role of an
adaptive robot in robot-assisted play. We investigate whether
an adaptive robot, i.e. a robot that could adapt to each child’s
play styles in real time would have a positive effect on the
children’s play styles and guide them progressively towards
more well balanced interaction styles.

III. T HE CASCADED INFORMATION BOTTLENECK

METHOD

A. Background: The Information Bottleneck Method

The Information Bottleneck Method [10] is a clustering
method based on an information theoretic approach whose
purpose is to extract the relevant information2 in a signal
x ∈ X that is, extract features of a random variable (r.v.)
X that are relevant to the prediction ofY . This problem is
modeled by the following Bayesian network with Markov
condition: X̃ ←− X ←− Y where X̃ is the variable that
extracts information aboutY throughX.

This popular method provides an alternative to ‘rate
distortion theory’ techniques which constitute a standard
approach to lossy source compression. In the Information
Bottleneck method, the relevance is not addressed through an
external distortion measure but directly through a variational
principle implementing an information-theoretic formulation
of sufficient statistics. The rationale is that the best trade-off
between the compression of the signal and the preservation of
the relevant information is the one that keeps a fixed amount
of relevant information about the relevant signal Y while

2In this context, the relevant information is defined as the information
that the (accessible) signalx ∈ X provides about another (typically not
directly accessible) signaly ∈ Y .

minimizing the number of bits from the accessible signalX,
i.e. maximizing the compression. The optimal assignment
can be found by minimizing the functional

L[p(x̃|x)] = I(X̃; X) − βI(X̃; Y ) (1)

I(X;Y ) stands for the mutual information betweenX and
Y. For β and the cardinality ofX̃ fixed, an expression can
be given which specifies implicitly the solution and leads to
a fixed-point iteration. For the information bottleneck set-
ting, the Kullback-Leibler divergenceDKL(p(y|x)||p(y|x̃))
replaces the distortion function from conventional rate-
distortion theory.

The Agglomerative Information Bottleneck algorithm [19]
makes the assumption thatβ tends to∞ in the Lagrangian
equation (Eq. 1). In this specific setting, the mutual informa-
tion betweenX̃ andY is maximized and a hard partition of
the data into subsets is induced, each subset correspondingto
a bottleneck statẽx: for a fixed cardinality ofX̃ (i.e. a fixed
number of subsets - also called states - in the bottleneck),
each member of the input signalx ∈ X belongs to one and
only one subset̃x ∈ X̃ and x̃ is the subset for whichp(y|x̃)
has the smallestDKL(p(y|x)||p(y|x̃)). The hard partition can
be softened afterwards, with reverse annealing.

B. The Cascaded Information Bottleneck Method

1) The principle: Based on the Information Bottleneck
Method, we have developed a novel time-filtering method
particularly adapted for pattern recognition in time series.
Let x ∈ X be a time series input signal of lengthl, x =
[x0, ..., xl−1]. We takek and S ∈ N, with l = k ∗ S, such
that x can be divided intoS disjoint sequencesXs, s =

0, ..., (S − 1), each of cardinalityk, in the following way:

x0 ... xk−1 xk ... x2k−1 ... xk∗S−1

X0 X1

The Cascaded Information Bottleneck method relies on the
principle that the relevant information can be progressively
extracted from the time series with a cascade of successive
bottlenecks sharing the same cardinality of bottleneck states
but trained successively. The agglomerative information bot-
tleneck algorithm is applied to each bottleneck successively,
the first one being trained in the standard way while the
next ones depend on the previous bottleneck states, as the
following graph shows:

X̃S−1
...X̃2X̃1X̃0

XS−1...X2X1X0

Y

2) Extrapolation: The Cascaded Information Bottleneck
Method progressively extracts the relevant information from
an input sampleX = [X0, ...,XS−1] by a recall on the



successive components (X0 for the first step of the cascade,
(X̃s−1,Xs) for step s > 0). Each bottleneck (we now
discuss onlys > 0, without loss of generality) is charac-
terized by a probabilistic mappingp(x̃s|(x̃s−1, xs)) which,
for the present work using the agglomerative information
bottleneck algorithm, is hard, i.e. above probability is 1 for
exactly one valuẽxs of X̃s and vanishes otherwise, i.e. it
implements a hard mapping(x̃s−1, xs) 7→ x̃s (note that the
input (x̃s−1, xs) corresponds to the inputx of the original
information bottleneck method).

During the information bottleneck training process, for
each step of the cascade successively (s > 0), the mapping
(x̃s−1, xs) 7→ x̃s is built. If, however, at a steps in the
cascade a pair(x̃s−1, xs) never occurs during the training
(we call this anunseen pair), the mapping(x̃s−1, xs) 7→
x̃s will not be defined for the completed cascade. Upon
processing of novel data, however, such a pair may be
observed and in this case the cascade has no way to infer
the following bottleneck statẽxs, since there is no natural
a priori correspondence of bottleneck states in successive
bottlenecks.

For such cases, we therefore introduce an identification
of successive bottleneck states which will provide us with a
“default” continuation of a bottleneck state from steps− 1
to steps in the case of unseen pairs. Let̃Xs−1 and X̃s be
the set of bottleneck states̃xs−1 and x̃s, as well asp(x̃s−1)
andp(x̃s) their empirical probabilities. We consider one-to-
one mappingsr from X̃s−1 to X̃s (which, for convenience,
we call permutations). Each such permutationr provides an
identification of successive bottleneck states. We define the
informational cost of a permutation as

d(s−1,s)(r) = −
∑

x̃s−1∈X̃s−1

p(x̃s−1) log p̃(X̃s = r(x̃s−1)|X̃s−1 = x̃s−1)

(2)

Note that p̃(X̃s = r(x̃s−1)|X̃s−1 = x̃s−1) is, for a given
permutationr, the probability that the next state isr(x̃s−1)
knowing that the current state is̃xs−1. The logarithm mea-
sures the unpredictability of the next state (i.e. the unpre-
dictability of X̃s given x̃s−1). If p̃(X̃s = r(x̃s−1)|X̃s−1 =

x̃s−1) = 0 then, by convention,d(s−1,s)(r) is ∞.
To define a “default” continuation we now choose a permuta-
tion R(s−1, s) that minimizes that unpredictability, weighted
by the probability that the statẽxs−1 actually occurs. Note
that per construction of the bottleneck cascade, one never has
p(x̃s−1) = 0.

R(s − 1, s) = arg min rd(s−1,s)(r) (3)

R(s−1, s) defines now a “default” path betweeñXs−1 and
X̃s, and thus provides an extrapolation of the succeeding
bottleneck state in the case of an unseen pair.

3) Implementation: The Cascaded Information Bottleneck
Method has been evaluated with two different criteria of
interaction, namely the gentleness and the frequency of the
interaction in [9]. The criterion gentleness contains two
classes, namely ‘gentle’ and ‘strong’ which correspond re-
spectively to non-forceful and forceful tactile interaction. The

frequency of the interaction is categorised into four classes,
defined by their typical periodicity of interaction: i)very low
(S0): the elapsed time between two tactile interactions is
greater than15 seconds; ii)middle inferior (S1): the elapsed
time between two tactile interactions is lower or equal to15
seconds and greater than5 seconds; iii)middle superior (S2):
the elapsed time between two tactile interactions is lower
or equal to5 seconds and greater than1 second; iv)very
high (S3): the elapsed time between two tactile interactions
is lower or equal to1 second.S1 and S2 are considered
here as well-balanced frequencies of interaction, whileS0

corresponds to a rare interaction andS3 to a very intense
interaction.

Two different cascades were built independently, one for
each criterion of interaction. The gentleness correspondsto a
short-term time scale event while the frequency corresponds
to a mid-term time scale event (see Fig. 1 which provides the
parameters for each cascade). The samples for the training
of each cascade were generated during interactions with
the Aibo ERS-7 in laboratory conditions within different
runs. Each run contained one class exclusively, i.e. for the
criterion gentleness, the samples generated within a same run
contained only gentle or only strong styles of interaction (i.e.
only gentle or only strong strokes were generated during a
same run), and for the criterion frequency of the interaction,
the samples generated within a same run contained only one
type of frequency (i.e.S0, S1, S2 or S3 exclusively).

 
 
Criteria  Classes Length of the input vector 

(window size), l 
Length of the 
individual 
subsequences, k 

Length of the 
cascade, S 

Number of 
bottleneck 
states, m 

Gentleness 2 classes: 
gentle/strong 

50 
(equivalent to 1.6 seconds) 2 25 4 

Frequency 4 classes: 
S0, S1, S2, S3 

472 
(equivalent to 15.1 seconds) 2 236 6 

 

Fig. 1. Parameters for each cascade of bottlenecks.

In both cases, a sliding window proceeds on the sensor
data time series. For the criterion ‘gentleness’, the algorithm
does not learn null samples (i.e. samples made of null events
only). For the frequency of interaction, the system deals only
with samples whose first component is not null.

The postprocessing relies on a ‘winner takes all’
principle: The selected (winner state) is defined by
arg maxy∈Y p(y|x̃S−1).

The method shows a sound recognition for both short-
term and mid-term time scale events and involves only a
very short delay for the recognition of short-term time scale
events (0.17 seconds on average) [9]. Besides, the training
process enables a structure to emerge over the cascade
since the conditional entropy between the bottleneck states
of two successive bottlenecks is globally decreasing over
the cascade (Fig. 2). The Cascaded Information Bottleneck
method is transparent and enables control over how much and
what new information is taken at which step of the cascade.
In particular, the extrapolation process enables to control the
degrees of freedom of the system and prevent the cascade
from over-learning.

In the next section, we present an application of the
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Frequency of the interaction: 
Conditional Entropy of successive bottleneck states 

0 
0.2
0.4
0.6
0.8

1 
1.2
1.4

0 20 40 60 80 100 120 140 160 180 200 220 240 
position s of the bottleneck in the cascade

C
on

di
tio

na
l e

nt
ro

py
 

(b
its

) 

Fig. 2. Conditional entropyH(X̃s+1|X̃s). H(X̃s+1|X̃s) globally decreases
over the cascade, pretty quickly, which suggests that a structure is progressively and
rapidly emerging over the cascade: at the beginning of the cascade, a lot of new
information is needed to deduce the next bottleneck state and then, when progressing
in the cascade, less and less new information is needed. However, for the frequency
of interaction,H(X̃s+1|X̃s) has some small local peaks, both at the very beginning
of the cascade and at the very end which suggest that at these steps s, the input data
Xs may influence a bit more in the choice of next equivalent stateX̃s+1. Note
that the ones at the end of the cascade may reflect the importance of the last steps
for distinguishing the classesS0 andS1. In the rest of the study, the algorithm will
extrapolate between step 5 and 24 (respectively 5 and 216) of the cascade for the
gentleness (respectively frequency).

Cascaded Information Bottleneck method for Robot-Assisted
Play whereby the method is used to enable a robot to
recognize in real time human-robot interaction styles and
adapt to them accordingly. In this application the criteriaof
interaction detected are the gentleness and the frequency of
the interaction and the cascades are the ones described in the
previous paragraph (and detailed in [9]).

IV. A PPLICATION: A REAL-TIME ADAPTIVE ROBOT FOR

ROBOT-ASSISTEDPLAY

A. The adaptive robot

In the context of this paper, a robot that is ‘adaptive’
can recognize interaction styles in real time and adapt to
them appropriately. In other words, an adaptive robot reacts
differently depending both on i) which sensor(s) is (are)
activated (e.g. head sensor) and ii) the styles of interaction
recognised. In contrast, by ‘reactive’ robot, we refer to a
robot that can only react differently depending on which
sensor is activated (e.g. head sensor or back sensor front),
and which will not change its behaviour according to the
interaction styles.

1) Reward of well balanced interaction styles: The adap-
tive mode relies on a reward basis for well-balanced in-
teraction styles: the child should get a positive feedback
from the robot when he/she plays in an appropriate style of
interaction. The idea behind is that the child should always
be encouraged and rewarded for every progress he/she made.
With this approach, we hope to comfort the child in gaining
self-confidence, enjoying himself/herself, and progressively
acquiring a better understanding of the interactions he/she
is involved in. It is hoped that the rewarding process can
indirectly play the role of a trigger: the child wants to get the
reward and therefore changes his/her behaviour until he/she

actually gets it. Concretely, the robot should help regulate the
interaction: if the child plays in a well-balanced interaction
style, the robot reacts appropriately to the stimulation; on
the contrary, if the interaction is e.g. too strong, the robot
does not show any reaction. Moreover, the child should be
encouraged to engage in the interaction if he/she is not
engaged. Therefore, the robot should be both rewarding and
engaging.

The reward is a physical reaction of the robot, which
can be a gesture, a movement, a light or a sound. The
concrete instantiation of these behaviours has been designed
by immersion for each child beforehand during long-term
studies with each child, whereby the experimenter tested
different robot behaviours with each child in order to evaluate
1) whether the specific child liked it or not, 2) whether he/she
conferred a specific meaning to the reaction and, particularly,
whether the reaction had, in his/her view, a connotation of
the robot being happy or sad.

We shall now detail the notion of reward: each time the
child activates a sensor, the robot evaluates the interaction
style in terms of gentleness and in terms of frequency and
gives a reward, separately according to each criterion. If
the interaction is gentle, then the robot shows a reaction
to the child. The reaction depends on the sensor activated
(there is a deterministic mapping between the sensors and
the reactions of the robot for each child). If the stimulation
takes place in a good overall frequency of interaction, i.e.a
well-balanced frequency of interaction, then two LEDs turn
on on the robot’s face (which is sometimes interpreted by
the children as the ‘robot’s eyes’). Note that a well-balanced
frequency of interaction is a frequency not too low and not
too high, represented in this study by the classesS1 andS2.
Note, this model is generic and can be applied with different
criteria of interactions. Fig. 3 presents the reward schemafor
the two criteria (gentleness and frequency) considered here.

 

Reward for Gentle 
 +  

Reward for well-balanced 
Frequency 

Engaging, proactive 

Reward for Gentle 

Reward for Gentle 

Reward for Gentle 
 +  

Reward for well-balanced 
Frequency 

No interaction 

No interaction 

S0 

S1 

S2 

S3 

GENTLE STRONG 

No Reward 

No Reward 

No Reward 

No Reward 

Gentleness 

Frequency 

Fig. 3. Reward Schema for the two criteria of interaction.

2) Architecture for Decision-Making Based on Interaction
Styles: The real-time recognition of the interaction styles
uses the Cascaded Information Bottleneck Method. The small
delay involved in the recognition process is modeled by
a pause in the decision-making process, that is a small
latency (600ms) during which the algorithm ignores the



current interaction style. After the pause, the decision-making
process looks at the successive classifications that are made
by the Cascaded Information Bottleneck algorithm during
a fixed short amount of time and counts the occurrences of
strong behaviours recognised. If it exceeds a fixed predefined
threshold then the final choice (i.e. the decision) is that the
child’s behaviour towards the robot is recognized as a ‘strong
interaction style’ and the child will not get a reaction from
the robot to his/her stimulation. If below threshold, then
the decision ‘gentle interaction style’ is made and the child
gets the reaction from the robot corresponding to the sensor
activated. Besides, the robot updates the criterion frequency
of interaction with a 1 second periodicity according to the
Cascaded Information Bottleneck method (different threads
for the gentleness and the frequency of interaction running
in parallel). If, when the child strokes the robot gently, the
current frequency of interaction isS1 or S2, then the child
will get the additional reward of the two lights illuminating
on the robot’s face, while the robot also shows the specific
reaction correlated to the gentle stimulation3.

As for the evaluation of the child’s disengagement, we
consider that the child should be encouraged to play with the
robot if he/she has not stroked the robot for a specific time
that we define here as just above 15 seconds (more exactly,
the length of the window size for classifying the frequency
of the interaction which is472 × 32 ms) which is reflected
by a null input vector for the frequency of the interaction.

B. Trials

1) Participants: Seven children with autism participated
in the experiments which took place in a school for moderate
learning difficulties in UK. The children had had the chance
to play with the robot during several months beforehand
and were familiar with both the robot and the experimenter.
The study was carried out with approval of the University
of Hertfordshire Ethics Committee. The parents of all the
children who took part in this study gave written consent,
including permission to videotape the children.

2) Artifact: The robot was the Aibo ERS-7. It behaved
autonomously and operated either in adaptive or reactive
mode. In both cases the mapping between the sensors and the
robot’s reactions was the same except from the LEDs flashing
for a good frequency of interaction, which was an additional
feature for the adaptive robot, as well as wagging the tail
when no interaction was detected. The behaviour mapping
used for this specific study is detailed in Fig. 4.

3) Procedures and Measures:
Procedures: Each child participated in two sessions and

the experiments involved one child at a time. Each session
consisted of three successive steps4 (also called games or
runs), each step being defined by the mode of the robot–

3Note that this decision-making process really reflects the variety of the
interaction styles considered here, the criterion ‘gentle/strong’ corresponding
to a short-term time scale event and the criterion ‘frequencyof the
interaction’ corresponding to a mid-term time scale event.

4A session resulted in three steps also called games, which are, succes-
sively, step 1 (game 1), step 2 (game 2) and step 3 (game 3).

 
 

Sensor Corresponding behaviour 
 

Chin sensor Emit “bark” sound while opening-closing the mouth 
Head sensor Turn head (Head tilt) 
Back front sensor - Wag the tail (used for Child E) 

- Walk forward, turn right, stand, turn left, walk backwards 
(used for the other children) 

Back middle sensor Turn head (Head pan) 
Back rear sensor Emit “drum” sound while wagging the tail  

Fig. 4. Mapping between the external tactile sensors of the robot and its
behaviours.For child E, the walking has been removed and replaced by the robot’s
wagging of the tail as part of the design by immersion.

reactive (R) or adaptive (A)– which alternated between two
successive steps.

As a result, a session was defined by its setting which was
either A-R-A or R-A-R. Each child experimented with both
settings (each during a different session, see Fig. 5).

Child Setting 1 Setting 2 
Child A A-R-A R-A-R 
Child G R-A-R A-R-A 
Child H A-R-A R-A-R 
Child C R-A-R A-R-A 
Child E R-A-R A-R-A 
Child F A-R-A R-A-R 
Child D R-A-R A-R-A 

 

Fig. 5. Settings for the different children.Setting 1 corresponds to session 1
and setting 2 corresponds to session 2.

The robot’s ‘mode’ was signaled to the child by a sticker
with a specific geometrical form drawn on it (a triangle for
adaptive and a circle for reactive mode); the sticker was put
on the back of the robot at the beginning of each step. At each
step, the child was told which game he/she was now playing,
i.e. game 1 for step 1, game 2 for step 2 and game 3 for step
3. The child could see the experimenter putting the sticker
on the back of the robot. The different stickers were used so
that it was not too hard for the child to understand that the
game was different (this procedure was considered to help
the children cope with different experimental conditions). But
the child had no information about the existence of adaptive
and reactive modes; he/she could only possibly observe the
difference in the reactions of the robot.

During each game, the child could freely interact with the
robot. Before the start of each game, the experimenter:

1) paused the algorithm (for game 2 and 3),
2) congratulated the child and told him/her that now he/she

would move on to game 2 (respectively 3),
3) put the corresponding sticker on,
4) sent the ‘new robot’s mode’ through a wireless connec-

tion to the robot,
5) resumed the algorithm for the detection of play styles

with the new robot’s mode.
Each game lasted several minutes (depending on the

children’s specific needs and abilities); the minimum duration
of each step was approximately 3 minutes. The experimenter
did not touch the robot during the trials, except for putting
on the sticker at the beginning of each step (sensor data were



not collected at this stage), neither did she try to influencethe
child’s behaviour in any way. The experimenter did not take
part in the child-robot interactions in order not to interfere
with the purpose of this study which had to focus on dyadic,
uninterrupted interactions between the child and the robot, in
order to test the potential of an adaptive robot to influence
children’s play styles.

Measures: The experiments were video recorded. The
sensor data and the interaction styles detected with respect
to the gentleness and the frequency of the interaction were
recorded. These data were then analysed quantitatively off-
line. For the criterion gentle/strong, we actually looked at
the overall proportion of the sensor’s activation and at the
ratio of strong interaction styles. For the criterion ‘frequency
of the interaction’, we took into account its evolution over
time, which means here that we looked at the whole set of
classifications, that is every 32 ms. We then used statistical
techniques for non-parametric statistics.

C. Results

1) Statistical analysis of the engagement in the interaction
and the gentleness of the strokes:

Box & Whisker Plot
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Fig. 6. Mean, Standard Error of the Mean (SE) and Confidence Intervals
for the sensors’ activation on the two modes.The x-axis represents the two
modes; the y-axis represents the repartition in percentage of the sensors’s activation.
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Fig. 7. Graph showing the relative engagement of the childrenin adaptive
and reactive modes.

Engagement in the interaction: In order to study
whether the adaptive robot may have a positive impact on
the engagement of the children in play we do not consider

the specificity of the strokes, i.e. whether they are gentle or
strong. Instead, for each child we are interested in the total
number of sensors’ activations that we compare for adaptive
and reactive robot modes.

For each child and for each mode, we count the total
number of times the sensors were activated (each sensor5

activated counts as one activation), namely,N(Reactive),
for the reactive mode, andN(Adaptive), for the adaptive
mode; for each child, we analyse the relative ratio of each
mode6, as follows:

r(Reactive) = N(Reactive)
N(Reactive)+N(Adaptive)

r(Adaptive) = N(Adaptive)
N(Reactive)+N(Adaptive)

The Wilcoxon test [20] is applied to the data from
the seven children for the two following variables
(Fig 7): r(Adaptive), representing the adaptive mode, and
r(Reactive), representing the reactive mode. The test shows
that there is a significant effect of the experimental conditions
adaptive versus reactive (forT = 1.000, p < 0.028,
with N = 7, Fig. 6). Thus, we can conclude that the
children engage significantly more in the interaction during
the adaptive mode..

Gentleness of the interaction: Here, we study the nature
of the activation in terms of gentleness, i.e. whether an
activation is gentle or strong. We therefore consider the
percentage of strong strokes (also called strong activations)
among the total number of sensor activations, per run and per
child. For each child and for each mode, we take the average
of this percentage over the runs from the two sessions7

(Fig. 8).

Child Average percentage of strong 
activations in the adaptive mode 

Average percentage of strong 
activations in the reactive mode 

Child A 20.52 71.97 
Child G 2.08 12.50 
Child H 5.56 9.09 
Child C 3.53 11.75 
Child E 15.23 15.79 
Child F 17.51 67.74 
Child D 60.58 33.33 

 

Fig. 8. Table providing the average percentage of strong strokes in each
mode for each child.

The Wilcoxon test is applied to the data from the seven
children for the two following variables (Fig 8): the average
of the percentage of strong strokes in the adaptive mode
and the average of the percentage of strong strokes in the
reactive mode. The test shows that there is no significant
effect of the experimental conditions on the gentleness of the
strokes (N = 7 and, forT = 5.00, on getsp < 0.128): there
is no significant difference in the amplitude of the average

5Here we look at the activation of any of the four continuous external
sensors, i.e. the head sensor and the three back sensors.

6Some children will naturally interact a lot with the robot, while others
may stroke the robot only a few time during a session, thus we prefer to
look at relative ratios.

7Here we consider the ratio of strong activations and investigate whether
this ratio is inferior when the robot is in the adaptive mode, compared with
when the robot is in the reactive mode.



percentage of strong strokes between adaptive and reactive
modes. However, the proportion of cases where this average
is smaller in the adaptive mode is6 cases out of7. The
probability of obtaining such a deviation (6 or more cases out
of 7) from a fifty-fifty ratio is0.016 (two-tailed probability in
the binomial test) which shows that, in the adaptive mode, the
percentage of children who react less strongly in the adaptive
mode deviates significantly from a fifty-fifty ratio.

2) Impact of the adaptive robot on the frequency of
interaction: To analyse the impact of the adaptive robot on
the frequency of interaction, we look at the four classesS0,
S1, S2, S3 and how their occurrence varies in the adaptive
and reactive modes.

We defineR as the set of the three runs (steps) within
a session for a specific child andNSi

(r) as the number of
events from a classSi for a specific runr. For each class
Si, each child, and each session, we define the relative ratio
ρSi

(r) for a given runr, defined as follows:

ρSi
(r) =

NSi
(r)∑

r̃∈R NSi
(r̃)

(4)

For each child, for each modem (adaptive or reactive) and
for each classSi, the average relative ratio over the two
sessions is calledAvm(ρSi

). For each child and for each
modem, the average relative ratio over the four classes is
calledAvm(ρ).

The Wilcoxon test is firstly applied to the two following
variables:AvAdaptive(ρ) (representing the adaptive mode)
andAvReactive(ρ) (representing the reactive mode). The test
shows that there is a significant effect of the experimental
conditions (adaptive versus reactive) since forT = 0, one
hasp < 0.018, with N = 7. We can conclude that, in the
adaptive mode, the interactions are significantly richer than
in the reactive mode.

Secondly, the Wilcoxon test is applied for each class
i separately, to the following variables:AvAdaptive(ρSi

)
(representing the adaptive mode) andAvReactive(ρSi

) (rep-
resenting the reactive mode). For classS0 (respectively
classS1) there is no significant difference between the two
experimental conditions (adaptive versus reactive), since, for
T = 5.000 (respectivelyT = 4.000), p < 0.128 (respectively
p < 0.173) with N = 7. However, the proportion of
cases whereAvAdaptive(ρS0

) > AvReactive(ρS0
) (respec-

tively AvAdaptive(ρS1
) > AvReactive(ρS1

)) is 6 cases out
of 7. The probability of obtaining such a deviation (6 or
more cases out of7) from a fifty-fifty ratio is 0.016 (two-
tailed probability in the binomial test) which shows that
the percentage of children for which there are more events
related toS0 (respectivelyS1) in the adaptive mode than
in the reactive mode deviates significantly from a fifty-fifty
ratio. ConcerningS2 (respectivelyS3) there is a significant
effect of the experimental conditions Adaptive and Reactive
since forT = 1.000 (respectivelyT = 0.000), p < 0.028
(respectivelyp < 0.018) with N = 7 (Fig. 9 and Fig. 10).
Consequently, in the adaptive mode, there are significantly
more events from classS2 (respectivelyS3) than in the
reactive mode.
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Fig. 9. Mean, Standard Error of the Mean (SE) and Confidence Intervals
for S2. The two variables areAvAdaptive(ρS2

) andAvReactive(ρS2
).
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Fig. 10. Mean, Standard Error of the Mean (SE) and Confidence Intervals
for S3 The two variables areAvAdaptive(ρS3

) andAvReactive(ρS3
)..

V. D ISCUSSION

This study has shown that a robot that can adapt to child-
robot interaction tactile styles can influence positively the
children’s play styles. Firstly, the children engaged signifi-
cantly more in the interaction when the robot was adaptive
and significantly more children played more gently with
the robot in the adaptive mode. Besides, the interactions
were significantly richer and higher frequencies including
in particular a range of well balanced frequencies were
significantly more present in the adaptive mode. The in-
troduction of an adaptive robot in robot-assisted play for
children with autism which is able to adapt in real time to
children’s interaction styles is a novel contribution. This is
both a technical and methodological step forward in robot-
assisted play. On the one hand, the development of a new
computational method that enables robots to recognize in real
time human-robot interaction styles is a step forward towards
socially adaptive robots. On the other hand, the evaluation
of the potential of an adaptive robot in robot-assisted play
expands the role that robots could potentially play in the
context of autism therapy.



The study conducted here involved only a few children and
was short-term. Future work should expand this study with
different children with autism. Note, in our study the children
were familiar with both the robot and the experimenter and
the robot’s behaviour mapping had been tailored according to
each child’s needs and abilities which is very important in the
context of autism. Future work should enable the same for the
new children involved. Besides, future work should consider
possible long-term effects of such an adaptive robot. In
particular, future work could expand the model of adaptation
by focusing on a larger grid of criteria for the interaction
styles: while the child progresses, the robot could increase
the range of criteria the child should meet to get a reward.
In contrast, when the child encounters some difficulties, then
the robot could simplify the range of criteria on which the
reward for the child is based, so that the child could get
a better understanding of the interactions happening. This
progressive refinement in the adaptation process of the robot
to the child’s play styles could be linked, in some sense,
to the notions of ‘discrete development’ and ‘(Alternate)
Freezing and Freeing of Degrees of Freedom’ which has
been widely used in developmental robotics [21; 22; 23].
This technique, typically applied for a system learning motor
skills, may be transposed to a social system, constituted here
by the child and the robot: this social system is freezing some
complexity in the interaction to learn more efficiently how
to deal with interaction in general.

VI. CONCLUSION

This paper has presented an application of the previously
introduced Cascaded Information Bottleneck Method for
real-time recognition of Human-Robot interaction styles in
the context of robot-assisted play for children with autism.
Such an adaptive robot, which can detect the play styles
of the children in real time and adapt to them accordingly,
has been implemented and tested in the particular context of
tactile interaction. The adaptation scheme rewards well bal-
anced interaction styles and encourages the child to engage
in the interaction if he/she is disengaged. The potential role
of such an adaptive robot (compared to a reactive robot) in
robot-assisted play has been evaluated with seven children
with autism in a school and a statistical analysis showed
that the adaptive mode influenced positively the play styles
of the children in the following manner: 1) the children
engaged significantly more in the interaction, 2) significantly
more children played more gently with the robot, 3) the
interactions were significantly richer and 4) the occurrence
of higher frequencies, including a range of well balanced
frequencies, was significantly increased. Future work should
consider a wider study with different children with autism
and investigate its long-term term impact. The Cascaded In-
formation Bottleneck Method is generic and could potentially
also be used in a variety of other applications in Robotics,
Artificial Intelligence and Artificial Life. It is hoped that
this work represents a step forward towards socially adaptive
robots as well as robot-assisted play for children with autism.
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